125I-lysergic acid diethylamide binds to a novel serotonergic site on rat choroid plexus epithelial cells.

نویسندگان

  • K A Yagaloff
  • P R Hartig
چکیده

125I-Lysergic acid diethylamide (125I-LSD) binds with high affinity to serotonergic sites on rat choroid plexus. These sites were localized to choroid plexus epithelial cells by use of a novel high resolution stripping film technique for light microscopic autoradiography. In membrane preparations from rat choroid plexus, the serotonergic site density was 3100 fmol/mg of protein, which is 10-fold higher than the density of any other serotonergic site in brain homogenates. The choroid plexus site exhibits a novel pharmacology that does not match the properties of 5-hydroxytryptamine-1a (5-HT1a), 5-HT1b, or 5-HT2 serotonergic sites. 125I-LSD binding to the choroid plexus site is potently inhibited by mianserin, serotonin, and (+)-LSD. Other serotonergic, dopaminergic, and adrenergic agonists and antagonists exhibit moderate to weak affinities for this site. The rat choroid plexus 125I-LSD binding site appears to represent a new type of serotonergic site which is located on non-neuronal cells in this tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی کیفی و کمی بیان پروتئین‌ آکواپورین1 در شبکه کوروئید رت نژاد سویتار

Abstract Background: Choroid plexus (CP) is a branched structure made up of a single layer of epithelial cells and blood capillaries, forming the blood-CSF-barrier. The CSF (cerebrospinal fluid) is mainly produced from the CP. Aquaporin1 (AQP1), water channels that are highly expressed on the apical side of the membrane in choroid plexus, have a major role in mediating water transport across th...

متن کامل

Serotonin 5-HT2C Receptors: Chemical Neuronatomy in the Mammalian Brain

Serotonin 5-HT 2C receptors belong to the 5-HT 2 family, which includes 5-HT 2A and 5-HT 2B receptors. All three share similarities in their molecular structure, pharmacology, and signal transduction pathways (Barnes and Sharp 1999; Hoyer et al. 1994). Initially named 5-HT 1C, based on the conventions for naming serotonin receptors at the time of its discovery, it was later renamed 5-HT 2C rece...

متن کامل

The choroid plexus removes beta-amyloid from brain cerebrospinal fluid.

beta-Amyloid (Abeta) concentration in the cerebrospinal fluid (CSF) of the brain may be regulated by the choroid plexus, which forms a barrier between blood and brain CSF. Abeta uptake from CSF was determined as its volume of distribution (V(D)) into isolated rat choroid plexus tissue. The V(D) of [125I]Abeta1-40 was corrected by subtraction of the V(D) of [14C]sucrose, a marker for extracellul...

متن کامل

Serotonin-stimulated cyclic AMP synthesis in the rabbit corneal epithelium.

Serotonin increases the level of cyclic AMP in incubated rabbit corneas; the concentration of agonist producing half-maximal stimulation is approximately 1.5 microM. Nialamide, an inhibitor of monoamine oxidase, potentiates the response to serotonin but not to epinephrine. Amitriptyline, an inhibitor of neuronal uptake of serotonin, does not potentiate the stimulation of cyclic AMP synthesis. L...

متن کامل

The Canadian Consortium for the Investigation of Cannabinoids in Human Therapeutics

Ashton, J. C., I. Appleton, et al. (2004). "Cannabinoid CB1 receptor protein expression in the rat choroid plexus: a possible involvement of cannabinoids in the regulation of cerebrospinal fluid." Neurosci Lett 364(1): 40-2. Cannabinoid CB1 receptors in the brain are expressed on axon terminals presynaptic to neurons that express fatty acid amide hydrolase (FAAH). Postsynaptic FAAH catabolizes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 5 12  شماره 

صفحات  -

تاریخ انتشار 1985